首页> 外文OA文献 >New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models
【2h】

New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models

机译:新的有效估计和变量选择方法   半参数变系数部分线性模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The complexity of semiparametric models poses new challenges to statisticalinference and model selection that frequently arise from real applications. Inthis work, we propose new estimation and variable selection procedures for thesemiparametric varying-coefficient partially linear model. We first studyquantile regression estimates for the nonparametric varying-coefficientfunctions and the parametric regression coefficients. To achieve niceefficiency properties, we further develop a semiparametric composite quantileregression procedure. We establish the asymptotic normality of proposedestimators for both the parametric and nonparametric parts and show that theestimators achieve the best convergence rate. Moreover, we show that theproposed method is much more efficient than the least-squares-based method formany non-normal errors and that it only loses a small amount of efficiency fornormal errors. In addition, it is shown that the loss in efficiency is at most11.1% for estimating varying coefficient functions and is no greater than 13.6%for estimating parametric components. To achieve sparsity with high-dimensionalcovariates, we propose adaptive penalization methods for variable selection inthe semiparametric varying-coefficient partially linear model and prove thatthe methods possess the oracle property. Extensive Monte Carlo simulationstudies are conducted to examine the finite-sample performance of the proposedprocedures. Finally, we apply the new methods to analyze the plasmabeta-carotene level data.
机译:半参数模型的复杂性给统计推断和模型选择带来了新的挑战,而实际应用中经常会出现这些挑战。在这项工作中,我们为这些半参数变系数部分线性模型提出了新的估计和变量选择程序。我们首先研究非参数变化系数函数和参数回归系数的分位数回归估计。为了获得良好的效率特性,我们进一步开发了半参数复合分位数回归程序。我们建立了参数和非参数部分的估计量的渐近正态性,并表明估计量达到了最佳收敛速度。而且,我们表明,所提出的方法比基于最小二乘法的方法更能有效地形成任何非常规误差,并且对于常规误差它只会损失少量效率。另外,表明对于估计变化的系数函数,效率损失至多为11.1%,对于估计参数分量,效率损失不大于13.6%。为了实现高维协变量的稀疏性,我们提出了半参数变系数部分线性模型中变量选择的自适应惩罚方法,并证明了该方法具有预言性。进行了广泛的蒙特卡洛模拟研究,以检验所提出程序的有限样本性能。最后,我们应用新方法分析血浆β-胡萝卜素水平数据。

著录项

  • 作者

    Kai, Bo; Li, Runze; Zou, Hui;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号